II Semester M.Sc. Degree Examination, June/July 2014 (NS) (2006 Scheme)
 MATHEMATICS
 M-202: Complex Analysis

Time: 3 Hours

Instructions : i) Answerany five full questions choosing at least two from each Part.
 ii) All questions carry equal marks.

PART - A

1. a) Find the radius of convergence of
i) $\sum_{n=0}^{\infty}\left[3+(-1)^{n}\right]^{1 / n}$
ii) $1+\frac{a \cdot b}{1 . c} z+\frac{a(a+1) b(b+1)}{1.2 c(c+1)} z^{2}+$
b) If R is the radius of convergence of $\sum a_{n} z^{n}$, then prove the following :
i) The power series converges for $|z|<R$ and diverges for $|z| \geq R$.
ii) If $0<\rho<R$ the power series converges uniformly in $\{|z| \leq \rho<R\}$.
c) Prove that the power series and its derivative have the same radius of convergence.
2. a) State and prove Taylor's theorem for an analytic function $f(z)$ in a region D about the point $\mathrm{z}=0$ on D .
b) Find the Laurent's expansion of $f(z)=\sinh \left(z+\frac{1}{z}\right)$ for $|z|>0$.
c) State and prove the Cauchy's integral formula and use it to evaluate

$$
\begin{equation*}
\int_{|z|=1} \frac{\cos 2 \pi z}{(2 z-1)(z-3)} d z \tag{4+4+8}
\end{equation*}
$$

3. a) State and prove Cauchy's theorem for triangle.
b) Let $f(z)$ be analytic function having an isolated singularity at $z=a$. If $|f(z)|$ is bounded in a neighbourhood $\{0<|z-a|<r\}$ Then prove that $f(z)$ has a removable singularity at $z=0$.
c) Define the terms :
i) Pole
ii) Removable singularity
iii) Essential singularity
iv) Isolated singularity and give examples for each.
4. State and prove Hadmard's three circle theorem and prove that $\log M(r)$ is a convex function of log r.
PART - B
5. a) Define holomorphic and meromorphic functions with examples.
b) State and prove the Cauchy's residue theorem.
c) Find the residue at the poles of the function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{\sin z}{z^{2}(z-1)^{2}(z-2)^{3}} \tag{4+6+6}
\end{equation*}
$$

6. a) Evaluate :
i) $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \theta, \quad a>b>0$
ii) $\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)^{2}} d x$
b) State and prove the argument principle theorem.
7. a) State and prove the Rouche's theorem.
b) Using the result of the Weistrass factorization theorem, construct an entire function having zero's at 1, 2, 3 .
c) State and prove Phragmen-Lindelof theorem.
8. a) Define Harmonic function. State and prove the mean value property for harmonic functions.
b) Derive the Poisson's integral formula on standard notations.
